English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية
R language data frame merging merge() Function.
The syntax format of the merge() function is as follows:
# S3 Method merge(x, y, ...) # data.frame of S3 Method merge(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all, sort = TRUE, suffixes = c(".x",".y"), no.dups = TRUE, incomparables = NULL, ...)
Common parameter descriptions:
x, y: Data frames
by, by.x, by.y: Specify the matching column names in two data frames, by default using the same column names in the two data frames.
all: Logical value; all = L is the shorthand for all.x = L and all.y = L, where L can be TRUE or FALSE.
all.x: Logical value, default is FALSE. If TRUE, display the matching rows in x, even if there is no corresponding match in y, and the non-matching rows in y are represented by NA.
all.y: Logical value, default is FALSE. If TRUE, display the matching rows in y, even if there is no corresponding match in x, and the non-matching rows in x are represented by NA.
sort: Logical value, indicating whether to sort the columns.
The merge() function is very similar to SQL's JOIN feature:
Natural join or INNER JOIN: If there is at least one match in the table, return the row
Left outer join or LEFT JOIN: Even if there is no match in the right table, return all rows from the left table
Right outer join or RIGHT JOIN: Even if there is no match in the left table, return all rows from the right table
Full outer join or FULL JOINIf there is a match in any of the tables, return the row
# data frame 1 df1 = data.frame(SiteId = c(1:6), Site = c("Google","w3"codebox","Taobao","Facebook","Zhihu","Weibo") # data frame 2 df2 = data.frame(SiteId = c(2, 4, 6, 7, 8), Country = c("CN","USA","CN","USA","IN") # INNER JOIN df1 = merge(x=df1,y=df2,by="SiteId") print("----- INNER JOIN -----) print(df1) # FULL JOIN df2 = merge(x=df1,y=df2,by="SiteId",all=TRUE) print("----- FULL JOIN -----) print(df2) # LEFT JOIN df3 = merge(x=df1,y=df2,by="SiteId",all.x=TRUE) print("----- LEFT JOIN -----) print(df3) # RIGHT JOIN df4 = merge(x=df1,y=df2,by="SiteId",all.y=TRUE) print("----- RIGHT JOIN -----) print(df4)
The output of the above code is:
[1] "----- INNER JOIN -----" SiteId Site Country 1 2 w3codebox CN 2 4 Facebook USA 3 6 Weibo CN [1] "----- FULL JOIN -----" SiteId Site Country.x Country.y 1 2 w3codebox CN CN 2 4 Facebook USA USA 3 6 Weibo CN CN 4 7 <NA> <NA> USA 5 8 <NA> <NA> IN [1] "----- LEFT JOIN -----" SiteId Site.x Country Site.y Country.x Country.y 1 2 w3codebox CN w3codebox CN CN 2 4 Facebook USA Facebook USA USA 3 6 Weibo CN Weibo CN CN [1] "----- RIGHT JOIN -----" SiteId Site.x Country Site.y Country.x Country.y 1 2 w3codebox CN w3codebox CN CN 2 4 Facebook USA Facebook USA USA 3 6 Weibo CN Weibo CN CN 4 7 <NA> <NA> <NA> <NA> USA 5 8 <NA> <NA> <NA> <NA> IN
used in R language melt() and cast() functions to integrate and split data.
melt(): Convert wide-form data to long-form.
cast(): Convert long-form data to wide-form.
The following figure well demonstrates the functions of melt() and cast() (detailed examples will be provided later):
melt() stacks each column of the dataset into one column, function syntax format:}}
melt(data, ..., na.rm = FALSE, value.name = "value")
Parameter description:
data: Dataset.
...: Pass other parameters to other methods or parameters from other methods.
na.rm: Whether to delete NA values in the dataset.
value.name: Variable name, used to store values.
Before performing the following operations, we first install the required packages:
# Install libraries, MASS includes many statistical functions, tools, and datasets install.packages("MASS", repos = "https://mirrors.ustc.edu.cn/CRAN/) # melt() and cast() functions require libraries install.packages("reshape2", repos = "https://mirrors.ustc.edu.cn/CRAN/) install.packages("reshape", repos = "https://mirrors.ustc.edu.cn/CRAN/)
Test example:
# Load libraries library(MASS) library(reshape2) library(reshape) # Create data frame id<- c(1, 1, 2, 2) time <- c(1, 2, 1, 2) x1 <- c(5, 3, 6, 2) x2 <- c(6, 5, 1, 4) mydata <- data.frame(id, time, x1, x2) # Original data frame cat("Original data frame:\n") print(mydata) # Integration md <- melt(mydata, id = c("id","time")) cat("\nAfter integration:\n") print(md)
The output of the above code is:
Original data frame: id time x1 x2 1 1 1 5 6 2 1 2 3 5 3 2 1 6 1 4 2 2 2 4 After integration: id time variable value 1 1 1 x1 5 2 1 2 x1 3 3 2 1 x1 6 4 2 2 x1 2 5 1 1 x2 6 6 1 2 x2 5 7 2 1 x2 1 8 2 2 x2 4
The cast function is used to restore merged data frames, dcast() returns a data frame, acast() returns a vector/Matrix/Array.
cast() function syntax format:
dcast( data, formula, fun.aggregate = NULL, ... margins = NULL, subset = NULL, fill = NULL, drop = TRUE, value.var = guess_value(data) ) acast( data, formula, fun.aggregate = NULL, ... margins = NULL, subset = NULL, fill = NULL, drop = TRUE, value.var = guess_value(data) )
Parameter description:
data: Merged data frame.
formula: The format of reshaped data, similar to x ~ y format, x as row label, y as column label.
fun.aggregate: Aggregate function, used to process value values.
margins: A vector of variable names (can include "grand_col" and "grand_row"), used to calculate margins, set TRUE to calculate all margins.
subset: Filter the results by conditions, format similar to subset = .(variable=="length")。
drop: Whether to retain the default value.
value.var: Followed by the field to be processed.
# Load libraries library(MASS) library(reshape2) library(reshape) # Create data frame id<- c(1, 1, 2, 2) time <- c(1, 2, 1, 2) x1 <- c(5, 3, 6, 2) x2 <- c(6, 5, 1, 4) mydata <- data.frame(id, time, x1, x2) # Integration md <- melt(mydata, id = c("id","time")) # Print recasted dataset using cast() function cast.data <- cast(md, id~variable, mean print(cast.data) cat("\n") time.cast <- cast(md, time~variable, mean print(time.cast) cat("\n") id.time <- cast(md, id~time, mean print(id.time) cat("\n") id.time.cast <- cast(md, id+time~variable) print(id.time.cast cat("\n") id.variable.time <- cast(md, id+variable~time) print(id.variable.time) cat("\n") id.variable.time2 <- cast(md, id~variable+time) print(id.variable.time2)
The output of the above code is:
id x1 x2 1 1 4 5.5 2 2 4 2.5 time x1 x2 1 1 5.5 3.5 2 2 2.5 4.5 id 1 2 1 1 5.5 4 2 2 3.5 3 id time x1 x2 1 1 1 5 6 2 1 2 3 5 3 2 1 6 1 4 2 2 2 4 id variable 1 2 1 1 x1 5 3 2 1 x2 6 5 3 2 x1 6 2 4 2 x2 1 4 id x1_1 x1_2 x2_1 x2_2 1 1 5 3 6 5 2 2 6 2 1 4