English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية

Pandas Panel

   Basic operations of Pandas Panel

Panel data3D container. Term Panel data Originating from econometrics, the name comes from pandas − pan(el)-da(ta)-s.

3The names of the axes are described as follows- −

items − Axis 0, each item corresponds to a DataFrame contained within.

major_axis − Axis1which is each DataFrame's index (row).

minor_axis − Axis2which is each DataFrame's column.

pandas.Panel()

Panels can be created using the following constructor:- −

 pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)

The parameters of the constructor are as follows:

ParametersDescription
dataData can take various forms, such as ndarray, series, map, list, dict, constants, and DataFrame
itemsaxis=0
major_axisaxis=1
minor_axisaxis=2
dtypeData type of each column
copyCopy data. Default false

Create Panel

Panels can be created in various ways, such as:

Create from ndarrays Create from DataFrame dictionary

Create from ndarrays

 # Create an empty panel
 import pandas as pd
 import numpy as np
 data = np.random.rand(2,4,5)
 p = pd.Panel(data)
 print(p)

The running result is as follows:

 <class 'pandas.core.panel.Panel'>
 Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
 Items axis: 0 to 1
 Major_axis axis: 0 to 3
 Minor_axis axis: 0 to 4

Create from DataFrame dictionary

  # Create an empty panel
 
  import pandas
   as pd  
 
  import numpy
   as np  
 data = {
  'Item1': pd.
  DataFrame(np.
  random.randn(4, 3)) 
  
    
  'Item2': pd.
  DataFrame(np.
  random.randn(4, 2))}  
 p = pd.
  Panel(data)  
 print(p)

Running Results:

 Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
 Items axis: Item1 to Item2
 Major_axis axis: 0 to 3
 Minor_axis axis: 0 to 2

Create an empty Panel

A Panel can be created using the Panel constructor function, as shown below:

 # Create an empty panel
 import pandas as pd
 p = pd.Panel()
 print(p)

Running Results:

 <class 'pandas.core.panel.Panel'>
 Dimensions: 0 (items) x 0 (major_axis) x 0 (minor_axis)
 Items axis: None
 Major_axis axis: None
 Minor_axis axis: None

Query Data from Panel

You can query data from the panel using the following three items:

Items Major_axis Minor_axis

Query using Items

 # Create an empty panel
 import pandas as pd
 import numpy as np
 data = {

Running Results:

 0         1        2
 0 0.488224 -0.128637 0.930817
 1 0.417497 0.896681 0.576657
 2 -2.775266 0.571668 0.290082
 3 -0.400538 -0.144234 1.110535

Query item from two items1, the output is a DataFrame with4Rows3Columns' DataFrame, respectively Major_axis and Minor_axis.

Query using major_axis

You can access the data using the panel.major_axis(index) method.

 # Create an empty panel
 import pandas as pd
 import numpy as np
 data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)) 
    'Item2' : pd.DataFrame(np.random.randn(4, 2))}
 p = pd.Panel(data)
 print(p.major_xs(1))

Running Results:

    Item1 Item2
 0 0.417497 0.748412
 1 0.896681 -0.557322
 2 0.576657 NaN

Query using minor_axis

You can access the data using the panel.minor_axis(index) method.

 # Create an empty panel
 import pandas as pd
 import numpy as np
 data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)) 
    'Item2' : pd.DataFrame(np.random.randn(4, 2))}
 p = pd.Panel(data)
 print(p.minor_xs(1))

Running Results:

    Item1 Item2
 0 -0.128637 -1.047032
 1 0.896681 -0.557322
 2 0.571668 0.431953
 3 -0.144234 1.302466