English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية
Pandas Sparse Data Operation Example
When omitted, with a specific value (NaN /Sparse objects will be 'compressed' when matching any data with missing values, even though any value can be chosen. A special SparseIndex object tracks the scattered positions of the data. This will be more meaningful in an example. All standard Pandas data structures apply the to_sparse method:
import pandas as pd import numpy as np ts = pd.Series(np.random.randn(10)) ts[2:-2] = np.nan sts = ts.to_sparse() print sts
The following results are shown:
0 -0.810497 1 -1.419954 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 0.439240 9 -1.095910 dtype: float64 BlockIndex Block locations: array([0, 8], dtype=int32) Block lengths: array([2, 2], dtype=int32)
Sparse objects exist for memory efficiency reasons.
Now let's assume you have a very large NA DataFrame and execute the following code-
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10000, 4)) df.ix[:9998] = np.nan sdf = df.to_sparse() print sdf.density
The following results are shown:
0.0001
Any sparse object can be converted back to a standard dense form by calling to_dense
import pandas as pd import numpy as np ts = pd.Series(np.random.randn(10)) ts[2:-2] = np.nan sts = ts.to_sparse() print sts.to_dense()
The following results are shown:
0 -0.810497 1 -1.419954 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 0.439240 9 -1.095910 dtype: float64
Sparse data should have the same dtype as its dense representation. Currently, float is supported64, int64and bool dtypes. The default fill_value changes depending on the original dtype-
float64 − np.nan int64 − 0 bool − False
Let's execute the following code to understand them:
import pandas as pd import numpy as np s = pd.Series([1, np.nan, np.nan]) print s s.to_sparse() print s
The following results are shown:
0 1.0 1 NaN 2 NaN dtype: float64 0 1.0 1 NaN 2 NaN dtype: float64